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Abstract
Existing local model-agnostic explanation techniques are in-
effective for machine learning models that consider inputs of
variable lengths, as they do not consider temporal informa-
tion embedded in these models. To address this limitation, we
propose REX, a general framework for incorporating tempo-
ral information in these techniques. Our key insight is that
these techniques typically learn a model surrogate by sam-
pling model inputs and outputs, and we can incorporate tem-
poral information in a uniform way by only changing the
sampling process and the surrogate features. We instantiate
our approach on three popular explanation techniques: An-
chors, LIME, and Kernel SHAP. To evaluate the effectiveness
of REX, we apply our approach to six models in three dif-
ferent tasks. Our evaluation results demonstrate that our ap-
proach 1) significantly improves the fidelity of explanations,
making model-agnostic techniques outperform a state-of-the-
art model-specific technique on its target model, and 2) helps
end users better understand the models’ behaviors.

Extended version — https://arxiv.org/abs/2209.03798

1 Introduction
As more critical applications employ machine learning mod-
els, how to explain the rationales behind these models has
emerged as an important problem. Such explanations al-
low end users to 1) judge whether the results are trustwor-
thy (Ribeiro, Singh, and Guestrin 2016; Doshi-Velez et al.
2017) and 2) understand knowledge embedded in the mod-
els, so they can use the knowledge to manipulate future
events (Poyiadzi et al. 2020; Prosperi et al. 2020; Zhang,
Solar-Lezama, and Singh 2018). This paper focuses on the
problem of explaining deep models processing sequential
data of variable lengths, such as Recurrent Neural Networks
(RNNs) and Transformers (Vaswani et al. 2017; Wolf et al.
2020) including large language models (LLMs) (Touvron
et al. 2023; Achiam et al. 2023).

To faithfully describe the behaviors of these models, it is
important to consider the effect of temporal information, as
the models care about not only the values of features but also
their positions when making decisions. Unfortunately, exist-
ing techniques either consider temporal information but fail

*Corresponding author.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Input Sentence

Explanation

I. He never fails in any exam.
(a)
{never, fails}(b)
{never, fails} Positive

Positive
∧ Posfails − Posnever = 1

II. He never attends any lecture,
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Figure 1: Example Anchors explanations (a) and REX-
augmented Anchors explanations (b).

to produce faithful explanations that are understandable, or
do not consider it at all and therefore produce explanations
of low fidelity. All existing techniques that consider tem-
poral information are global (Jacobsson 2005; Wang et al.
2018) (e.g. surrogate deterministic finite automatons (Om-
lin and Giles 1996; Weiss, Goldberg, and Yahav 2018; Dong
et al. 2020)), which explain target models on the whole input
domain (Dwivedi et al. 2023). However, faithful global ex-
planations are complex for real-world models, which renders
them hard for end users to understand, and limits their ap-
plication in practice. In contrast, local techniques (Ribeiro,
Singh, and Guestrin 2016, 2018; Zhang, Solar-Lezama, and
Singh 2018; Arras et al. 2017; Wachter, Mittelstadt, and
Russell 2017; Lundberg and Lee 2017) explain target mod-
els on a particular set of inputs (typically ones that are simi-
lar to a given input), so they can produce more tractable and
understandable explanations (Zhang et al. 2021). However,
none of them captures the effect of temporal information,
which leads to low fidelity.

To bridge this gap, we plan to incorporate temporal infor-
mation into various popular local explanations. Moreover,
to ensure our method can explain a wide range of models,
we focus on local model-agnostic techniques. Towards this
end, we propose REX, a general framework for incorpo-
rating temporal information in various local model-agnostic
explanation techniques.

We take two popular local model-agnostic explanation
techniques, Anchors (Ribeiro, Singh, and Guestrin 2018)
and LIME (Ribeiro, Singh, and Guestrin 2016), as examples
to show how our framework improves existing techniques.
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Figure 2: Example explanations generated by LIME (left)
and REX-augmented LIME (right).

Figure 1 and 2 show explanations for two sentiment anal-
ysis models. Figure 1 shows the Anchors explanations (re-
ferred to as anchors) of an LSTM on two sentences. Anchors
provides rule-based local sufficient conditions for model
predictions. For Sentence I, the anchor states that the pres-
ence of “never” and “fails” guarantees a positive predic-
tion. For Sentence II, the anchor is the same, but the predic-
tion is negative. The key difference is that the words “never”
and “fails” form a phrase in Sentence I, whereas they are
separated in Sentence II. The anchors fail to capture the dif-
ference, and their infidelity leads to confusing results. Expla-
nations with temporal information address this issue. REX-
augmented explanations use Posw to denote the position of
a word w in the sentence, i.e., w is the Posw-th word in the
sequence. For Sentence I, the REX-augmented anchor states
that the presence of “never” and “fails” with “never” right
before “fails” guarantees a positive prediction. For Sen-
tence II, the REX-augmented explanation is the presence of
“never” and “fails” with “never” not right before “fails”
guarantees a negative prediction. The REX-augmented an-
chors faithfully capture the behaviors of the LSTM.

Similar issues exist in LIME, which provides feature at-
tributions. Figure 2 shows a LIME explanation of a BERT-
based sentiment analysis model (Devlin et al. 2018) on a
sentence. LIME assigns high positive scores to the words
“not” and “bad”. It indicates that either “not” or “bad” can
make the sentence more positive, which is unfaithful to the
BERT model. In this way, users can predict “Bob is a bad
boy” as a positive sentence, as the word “bad” should have
a strong positive effect. However, the model prediction is
negative. The key is that “not bad” together is a positive
phrase, whereas “not” or “bad” alone is a negative word.
Incorporating temporal information in LIME addresses this
issue. REX-augmented LIME gives “not” before “bad” the
highest positive score, whereas “not” and “bad” both get
negative scores, which 1) associates the two words, and 2)
captures that “not” comes before “bad.”

Figure 3 shows another example of explaining an anomaly
detection RNN that takes a time series data x = x1x2...xn

as input. After reading x1x2...xi, the RNN outputs a binary
label yi to indicate whether xi is an anomaly. An anchor
is that the anomaly is detected because of the presence of
several separated data points. The REX-augmented anchor
states that the anomaly is detected because of the presence

Anomaly data point: 428
Explanation:

Anchors  : {414, 417, 416, 415, 418,
413, 419, 412}

Anchors*: {413,425} at least 3 data
points between  them

Figure 3: Anchors and REX-augmented Anchors (Denoted
as Anchors*) explanations for an anomaly detection RNN.
Anchors: if the values of x414, x417, x416, x415, x418, x413,
x419, and x412 remain unchanged, x428 will be classified as
an anomaly. Anchors*: if the values of x413 and x425 remain
unchanged, and there are at least 3 data points between them,
x428 will be classified as an anomaly.

of data points 413 and 425 with at least 3 points between
them. The REX-augmented explanation is more faithful and
reveals more meaningful information to end users.

The preceding examples indicate that existing local expla-
nations can be unfaithful and confusing for model process-
ing inputs of variable lengths, because existing techniques
only use the values of features (e.g. words for text data,
data points for time-series data) as the components to build
explanations. To address this issue, REX adds temporal in-
formation by showing the effect of the absolute positions
of features and the relative positions between features. The
examples show that incorporating temporal information im-
proves the fidelity, making users better understand the be-
haviors of the models.

To incorporate temporal information into various local
model-agnostic explanation techniques in a uniform and
lightweight manner, we have made two key observations: 1)
these techniques use a perturbation model to generate sam-
ples that are similar to the original input, and capture the
local behavior of the model via these samples; 2) these tech-
niques use feature predicates as the basic language compo-
nents to construct explanations. Therefore, by only extend-
ing the perturbation model and the language components of
explanations, REX enables these techniques to incorporate
temporal information automatically without changing their
core algorithms.

We demonstrate the effectiveness of REX by evaluat-
ing the explanations of an LSTM, four transformer models
(BERT, T5 (Raffel et al. 2020), GPT-2 (Radford et al. 2019),
Llama 2 (Touvron et al. 2023)) on a sentiment analysis task,
an RNN on an anomaly detection task, and Llama 2 on a text
generation task, after applying REX to Anchors, LIME, and
Kernel SHAP (Lundberg and Lee 2017). On average, REX
helps improve the fidelity of Anchors, LIME, and Kernel
SHAP explanations by 218.7%, 41.2%, and 36.0% respec-
tively. Moreover, REX-augmented LIME and SHAP outper-
form DecompX (Modarressi et al. 2023), a state-of-the-art
explanation method for text models on its target model. We



also run a user study, which shows that REX helps end users
better understand and predict the behaviors of target models.

2 Preliminaries
In this section, we introduce the background of our ap-
proach. Without loss of generality, we assume the target
model is a black-box function from a sequence of real num-
bers to a real number, f : R∗ → R, where R∗ =

⋃
T∈N RT .

For an input x = (x1, x2, . . . , xn), let |x| denote the length
of x, and xi represent the i-th feature value of x. We limit
our discussion to classifiers and regressors.

Given an input x ∈ R∗ and a model f , a local model-
agnostic explanation technique t generates a local explana-
tion gf,x := t(f, x). This explanation, denoted as g for sim-
plicity, is a self-interpretable expression that describes the
behaviors of f around x formed with predicates. Each pred-
icate p maps an input to a binary value, i.e., p : R∗ → {0, 1}.

All existing local model-agnostic explanation techniques
generate explanations in a similar workflow, as shown in
Figure 4, which involves three steps:
1. Producing Predicates: These techniques produce a set

of predicates based on the input x, denoted as P .
2. Generating Samples: An underlying perturbation

model tper generates a set of samples that are similar
to the input x, denoted as Xs.

3. Learning Explanations: These techniques learn a local
explanation g consisting of predicates in P , using Xs and
its corresponding model outputs f(Xs).

Popular techniques such as LIME, Anchors, and Kernel
SHAP all follow this workflow. Specifically, they use the
same kinds of predicate sets and perturbation models. In
the following, we introduce their predicate sets, perturbation
models, and learning algorithms in detail.

Predicate Sets. Given an input x, and letting J1, nK :=
{1, 2, . . . , n}, a predicate set is defined as follows:

P := {pi|i ∈ J1, |x|K}. (1)

Here, each pi is a feature predicate defined by pi(z) :=
1ran(x,i)(zi), where ran(x, i) is a set containing xi. Specifi-
cally, pi is an indicator function that checks if the i-th feature
of a sample z has a similar value to xi (i.e., zi ∈ ran(x, i)).
For example, we can use ran(x, i) = (xi − ϵ, xi + ϵ) for a
real number xi, and use ran(x, i) = {xi} for a categorical
value xi.

Perturbation Models. The perturbation model tper gen-
erates samples by changing the feature values of the input
x. Given a parameter n, tper generates n samples from the
domain D defined as follows:

D = {z ∈ R|x| | ∀i ∈ J1, |x|K, zi ∈ per(x, i)} (2)

where per(x, i) is the perturbation range of xi, whose defi-
nition depends on the type of xi. Specifically, per(x, i) con-
tains values similar to xi and ran(x, i) ⊂ per(x, i).

Learning Algorithms and Explanations. This step is
to learn an understandable expression g. In Anchors, g is
a conjunction of predicates that provides a sufficient con-
dition for f to produce the same output as f(x), i.e.,
f(z) = f(x) if g(z) = 1. Specifically, g(z) =

∧
p∈Q p(z),

where Q is selected from P by a greedy algorithm based
on the KL-LUCB algorithm (Kaufmann and Kalyanakrish-
nan 2013). In LIME and kernel SHAP, g is a linear ex-
pression that serves as a local surrogate model of f , i.e.,
g(z) = Σp∈P ωpp(z) + ω0, where ωp is the weight of p
and ω0 is a constant. LIME and kernel SHAP use different
linear regression algorithms to learn ωp.

Due to the limitations of the preceding predicates and per-
turbation models, existing local explanation techniques can
only capture the behavior of target models on samples of the
same lengths as the original input1 , and produce explana-
tions with only constraints of feature values, which limits
their effectiveness on models processing sequential data of
different lengths.

3 The REX (tempoRal eXplanation)
Framework

We propose REX to provide a general approach to incorpo-
rate temporal information in explanations, without requiring
significantly modifying existing techniques. In this section,
we introduce REX in three steps: 1) defining local expla-
nations with temporal information, 2) showing how to aug-
ment existing techniques to generate these explanations, and
3) outlining the REX-augmented workflow.

Local Explanations with Temporal Information
Our key observation is that although the form of explana-
tion expressions varies, the expressions are all built from the
predicate set P . If we can use predicates that reflect tempo-
ral information to build explanations, temporal information
is inherent in the explanations.

Our temporal predicates describe the temporal relation-
ship between a set of features. We limit the number of fea-
tures in a temporal predicate up to two because 1) in most
cases, the temporal relationship between two features suf-
fices to cover a large range of inputs of different lengths, and
2) humans have difficulty understanding high-dimensional
information. Their definitions are as below:

Definition 1 (1-D Temporal Predicate) Given an input x,
a 1-D temporal predicate takes the form of

p1Dk,d,op(z) := ∃i ∈ Z+, (zi ∈ ran(x, k) ∧ i op d) (3)

where d ∈ Z+, and op is a binary operator, like =,≤, and
≥.

Definition 2 (2-D Temporal Predicate) Given an input x,
a 2-D temporal predicate takes the form of

p2Dk,l,d,op(z) := ∃i, j ∈ Z+,

(zi ∈ ran(x, k) ∧ zj ∈ ran(x, l) ∧ j − i op d) (4)

where d ∈ Z, and op is a binary operator.

We use 1-D temporal predicates to illustrate the effect of
a single feature’s absolute position, and 2-D to illustrate the

1When explaining NLP models, some perturbation models al-
low replacing a word with an empty string. This enables the expla-
nations to cover inputs of shorter lengths to some extent.
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Figure 4: The workflow of generating explanations by a local model-agnostic explanation technique.

effect of the relative position between two features. More-
over, 2-D temporal predicates also apply to the case where
the presence of two features together is important, but their
order is not. We then introduce the definition of local expla-
nations with temporal information:
Definition 3 (Explanation with Temporal Information)
A local explanation with temporal information is a local
explanation constructed from feature predicates, 1-D
temporal predicates, and 2-D temporal predicates.

Examples. Given Input Sentence I in Figure 1, a 2-D
temporal predicate is ∃i, j ∈ Z+, (zi = “never” ∧ zj =
“fails” ∧ j − i = 1). The REX-augmented anchor in Fig-
ure 1 is a conjunction consisting of only the preceding 2-
D predicate. For another sentence “He could solve only the
problem,” which is judged as negative, the REX-augmented
anchor is ∃i ∈ Z+, (zi = “only” ∧ i ≥ 2). This 1-D pred-
icate indicates that similar sentences with “only” not at the
beginning are judged as negative, such as “She only could
solve the problem.” However, sentences like “Only he could
solve the problem” are neutral or positive.

Augmenting Generation Techniques
Consider the workflow of existing local model-agnostic
techniques in Figure 4. While their core algorithms differ,
they are not different from standard machine learning algo-
rithms at a high level. To make them incorporate temporal
information without modifying their underlying design, we
only need to change their features and the data they learn
from: To incorporate the temporal predicates into explana-
tions, we need to extend the predicate set P ; to capture the
effect of temporal information, we need to extend the per-
turbation model tper.

Extending Predicate Sets. Definition 1 and 2 provide the
forms of 1-D and 2-D temporal predicates. Given an input
x, we add the corresponding 1-D temporal predicates

P1D := {p1Dk,d,op|k, d ∈ J1, |x|K ∧ op ∈ {=, >,<,≥,≤}}
(5)

and 2-D temporal predicates

P2D := {p2Dk,l,d,op|k, l ∈ J1, |x|K ∧ k < l

∧ d ∈ J−|x|, |x|K ∧ op ∈ {=, >,<,≥,≤}} (6)

to the predicate set. For a specific usage scenario, users can
further restrict the range of k,l,d, and op. For example, users
can set a window w to limit |d− k| ≤ w for P1D, and |d| ≤
w and l − k ≤ w for P2D. We define the REX extended
predicate set as PR := P ∪ P1D ∪ P2D.

Extending Perturbation Models. To generate samples of
different lengths, we add a postprocessor to the perturbation
models of existing techniques. The postprocessor can gen-
erate samples of different lengths by removing or switching
features. For an input x, the postprocessor does feature re-
moval and swap on it in sequence: 1) rf(x) returns a set of
all subsequences of x; 2) sf(x, i, j) switches the i-th and
j-th features of x. We denote the REX-augmented perturba-
tion model as tRper, and tRper(x, n) takes n samples from the
domain DR defined as follows:

DR = {sf(z, i, j) | z ∈
⋃

z′∈tper(x)

rf(z′)

∧ i, j ∈ J1, |z|K ∧ i < j}. (7)

REX-Augmented Workflow
Compared to the vanilla workflows shown in Figure 4, the
REX-augmented techniques use similar workflows, but re-
place the predicate set P with PR and the perturbation
model tper with tRper. As a result, they can capture tar-
get models’ behaviors on variable-length inputs by tRper-
generated samples, and present the effect of temporal infor-
mation with temporal predicates in PR.

4 Empirical Evaluation
In this section, we demonstrate the generality of REX and
its effectiveness in improving the explanation fidelity and
helping end users understand and predict the behaviors of
the target models through empirical evaluation. To show
the generality of REX, we instantiated it on three different
techniques: Anchors, LIME, and Kernel SHAP (KSHAP for
short). They were applied to explain various models of two
classification tasks (sentiment analysis and anomaly detec-
tion), and a text-generation task. To show the fidelity im-
provement by REX, we compared explanation fidelity of the
REX-augmented techniques with the vanillas and a state-
of-the-art model-specific technique, DecompX (Modarressi



Method Precision (%) Coverage (%)

LSTM BERT T5 GPT-2 Llama 2 Anom. LSTM BERT T5 GPT-2 Llama 2 Anom.

Anchor 84.74 82.64 81.74 82.03 79.15 90.40 1.87 2.46 1.29 8.08 1.75 4.60
Anchor* 86.48 84.04 84.04 82.54 80.20 89.10 10.77 12.07 11.78 10.26 10.35 8.70

Table 1: Average precision and coverage of anchors and ReX-augmented anchors (denoted as anchors*) for sentiment analysis
models and the anomaly detection RNN (Anom.).

.

Method Accuracy (%) AUROC

LSTM BERT T5 GPT-2 Llama-2 Anom. LSTM BERT T5 GPT-2 Llama-2 Anom.

LIME 58.47 55.78 66.66 51.46 54.35 62.30 0.604 0.584 0.603 0.533 0.521 0.575
LIME* 75.09 68.20 86.99 69.03 62.68 80.10 0.887 0.927 0.924 0.759 0.728 0.763
KSHAP 63.64 58.02 66.24 56.06 51.06 62.90 0.613 0.593 0.590 0.578 0.536 0.557
KSHAP* 86.10 83.75 73.62 69.34 61.81 77.40 0.879 0.890 0.909 0.711 0.680 0.716
DecompX – 60.80 – – – – – 0.601 – – – –

Table 2: Average accuracy and AUROC of the explanations generated by LIME, KSHAP, their REX-augmented versions, and
DecompX for sentiment analysis models and the anomaly detection RNN (Anom.).

et al. 2023). To show how much REX helps end users under-
stand and predict the behaviors of the target model, we con-
ducted a user study. Finally, we discuss the time efficiency
of REX-augmented techniques.

Target Models, Datasets and Experimental Setup
Sentiment Analysis. Sentiment analysis models take a text
sequence as input and return a binary value indicating posi-
tive or negative sentiment. We used an LSTM, BERT, GPT-
2, and T5, along with Llama 2 as the target models, and used
the Stanford Sentiment Treebank dataset (Socher et al. 2013)
with its original train/validation/test split. We explained the
target models on the test set, which contains 1821 sentences.
For the text data, we set ran(x, i) = {xi}, and defined
per(x, i) as the set of words that BERT predicts can appear
in the context of xi. In other words, all the vanilla feature
predicates indicate whether the i-th word matches the i-th
word in the target input and the vanilla perturbation model
replaces words using BERT. As long-distance temporal in-
formation exerts little influence on models, we set a window
w = 5, which further limits |d−k| ≤ 5 for P1D, and |d| ≤ 5
and l − k ≤ 5 for P2D.

Anomaly Detection. Anomaly detection models take a
real number sequence x = (x1, x2, . . . , xn) as the input. Af-
ter reading (x1, x2, . . . , xi), the model outputs yi ∈ {0, 1}
that indicates if xi is an anomaly. We trained an Anomaly
Detection RNN (Park 2018) on an ECG dataset (Dau et al.
2018) with its original train/validation/test split, and ex-
plained the target model on the 9 anomalous inputs in the test
set. For the real number sequence data, we set ran(x, i) =
{xi}, defined per(x, i) as the real numbers sampled from
a normal distribution N (xi, 1). In other words, all the non-
temporal features indicate whether the i-th number matches
the i-th number in the target input, and the vanilla perturba-
tion model samples numbers from a normal distribution for
each feature. For tractability, we limited the explanations to
only consist of data points that are at most 20 steps before

the detected anomalous point in a time series.
Text Generation. Text generation models take a text

sequence as the input and return another text sequence.
Anchors, LIME, and KSHAP are not originally designed
for text generation models, while MExGen (Paes et al.
2024) introduces a method to adapt LIME and KSHAP
to these models by converting the generation task to a re-
gression task. We followed this approach to adapt LIME
and KSHAP. We also consider two additional baselines, C-
LIME and L-SHAP, which are instances of MExGen that
are designed specifically for text generation models. We
used LLama 2 as the target model, and explained it on 100
randomly chosen sentences from Google Natural Questions
Dataset (Kwiatkowski et al. 2019). We used the same REX
setting as the sentiment analysis task.

Fidelity Evaluation
Fidelity reflects how faithfully an explanation describes the
target model. As Anchors provides rule-based explanations
while LIME and KSHAP provide attribution-based surro-
gates, we employ different metrics.

Considering that anchors are rule-based sufficient condi-
tions (Lakkaraju, Bach, and Leskovec 2016; Ribeiro, Singh,
and Guestrin 2018; Craven and Shavlik 1995), we used cov-
erage and precision as fidelity metrics. Given a target model
f , an input x, their corresponding anchor g, and the distribu-
tion D from the perturbation model, we define coverage as
cov(x; f, g) := Ez∼D(x)[g(z)], i.e., the proportion of inputs
in the perturbation domain that match the rules; we define
precision as prec(x; f, g) := Ez∼D(x)[1f(x)=f(z)|g(z) = 1],
i.e., the proportion of covered data that have the same model
output as the original input.

For LIME and KSHAP, we use the metrics for surrogate
models (Balagopalan et al. 2022; Yeh et al. 2019; Ismail,
Corrada Bravo, and Feizi 2021). Given a target model f ,
an input x, their explanation surrogate model g, the distri-
bution D, and a performance metric L (e.g., accuracy, area



Figure 5: Average accuracy and AUROC of explanations for the four sentiment analysis models under different settings. The
explanations are generated by LIME and its three augmented versions, which are augmented by REX, REX without 1D-
predicates, and REX without 2D-predicates.

Method LIME C-LIME LIME* KSHAP L-SHAP KSHAP*

MSE 0.187 0.137 0.054 0.069 0.065 0.028

Table 3: Average mean square error (MSE) of explanations
for LLama 2 on the text generation task.

under the receiver operating characteristic curve (AUROC),
or mean squared error (MSE)), the (in)fidelity is defined as
Ez∼D(x)L(f(z), g(z)). In our evaluation, we used accuracy
and AUROC for the sentiment analysis task and anomaly
detection task, and MSE for the text generation task.

Table 1 shows the fidelity of anchors and REX-augmented
anchors. REX improves the average coverage by 218.7%
relative to the vanilla anchors, while maintaining roughly
the same level of precision or slightly improving it. Table 2
and 3 show the explanation fidelity of LIME, KSHAP, and
the REX-augmented versions. On the sentiment analysis and
anomaly detection task, relative to the vanillas, REX im-
proves the average accuracy of explanations by 26.6% and
26.3%, and the AUROC by 45.8% and 38.0% respectively;
on the text generation task, REX decreases the average MSE
by 0.133 and 0.041 respectively, and both REX-augmented
techniques outperform C-LIME and L-SHAP. For these 20
setup pairs that are only different in whether REX is applied,
our paired t-tests indicate that with over 99% confidence,
REX significantly improves the explanation fidelity.

To illustrate the effect of 1-D and 2-D predicates, we con-
ducted an ablation study on LIME. Figure 5 shows the re-
sults, which indicate that both 1-D and 2-D temporal pred-
icates can improve the fidelity separately, and bring about
more significant improvement together.

We also compare the fidelity of REX with one of the state-
of-the-art attribution-based techniques: DecompX (Modar-
ressi et al. 2023), which is a white-box method designed for
BERT. Since it is model-specific, it cannot be augmented
with REX. However, by applying REX, the explanation
fidelity of LIME and KSHAP, two relatively old model-
agnostic techniques, surpasses that of DecompX.

Methods Precisionu(%) Coverageu(%)

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

Anchors 70.6 47.4 18.1 47.4 57.8 58.0 44.0 37.0 37.0 43.5
Anchors* 81.2 99.4 73.9 84.1 97.7 61.9 69.5 80.5 71.5 60.5

Table 4: Average Precisionu and Coverageu of each test in
the user study.

User Study
To assess how REX helps end users understand target mod-
els and predict their behaviors, we conducted a user study by
comparing anchors and REX-augmented anchors (denoted
as anchors*) on the preceding sentiment analysis LSTM.
Similarly, we used coverage and precision as metrics, but
now they describe how well a human’s predictions match
the model’s after consuming explanations. These metrics
are denoted as precisionu and coverageu. We employed 19
CS undergraduates with machine learning backgrounds but
no experience with explanation techniques, to study how
much REX improves Anchors. The questionnaire contains
five tests. Each test first presents a sentence, the network’s
output on the sentence, and their corresponding anchor and
anchor*. We randomly chose the sentences from the test
set. Then we asked each user to predict the RNN’s output
on 10 new sentences, which are produced using our pertur-
bation model (with BERT). They could answer “positive”,
“negative”, or “I don’t know”. Coverageu for a sentence is
the percentage of users that do not answer “I don’t know”.
Precisionu for a sentence is the percentage of users that give
a prediction that matches the model output among the users
that do not answer “I don’t know”.

Table 4 shows the average coverageu and precisionu
across the 19 users and 10 sentences for each test. The
anchors* outperform the anchors on all tests in terms of
both coverageu and precisionu. Among these tests, the an-
chors* yield an average precisionu of 87.3% and an average
coverageu of 68.8%, while the anchors yield only 48.3%
and 43.9%. The relative improvements are 80.9% and 56.7%



LSTM BERT T5 GPT-2 Llama 2 (senti.) RNN (Anom.) Llama 2 (gene.)

* * * * * * *
Anchor 0.43 0.76 1.87 1.92 11.06 10.03 14.05 8.72 612.78 276.54 460.30 371.40 – –
LIME 0.15 3.98 1.23 5.04 2.82 7.41 4.12 8.27 239.55 241.76 245.20 263.30 398.77 404.08
KSHAP 0.13 3.97 1.23 5.45 3.50 7.93 4.02 8.08 289.38 297.90 267.40 291.40 424.55 429.61

Table 5: Average execution time (in seconds) of Anchors, LIME, and KSHAP and their REX-augmented version (denoted as
“*”) to explain the models in our experiments.

respectively. We did paired t-tests on these paired data.
With more than 99% confidence, REX significantly helps
users predict more instances more precisely, i.e., REX helps
users better understand the target model’s behavior.

Runtime Overhead
Table 5 shows the execution time of the fidelity experiments.
For Anchors, REX increases the execution time of explain-
ing the LSTM and BERT by 0.19 seconds on average, but
reduces the time to explain other target models by 107.8
seconds on average; for LIME and KSHAP, REX slightly
increases the average execution time by 6.87 seconds.

How REX affects the explanation time depends on the un-
derlying explanation technique. The execution time of An-
chors heavily depends on the underlying KL-LUCB algo-
rithm. REX can often accelerate the KL-LUCB algorithm.
The execution times of LIME and KSHAP equal the sum of
the model’s predicting time and the regression time. REX
keeps the same predicting time and increases the regres-
sion time from O(n2|Xs|) to O(n2w4|Xs|) in the sentiment
analysis and text generation tasks, and from O(202|Xs|) to
O(206|Xs|) in the anomaly detection task, where n is the
input length, |Xs| is the number of samples, and w = 5 is
a small constant. For small models, such an increase is ac-
ceptable as the original explanation techniques already run
fast. For large models like LLama 2, the extra overhead is
negligible as the explanation time is dominated by running
the model.

5 Related Work
Our work is related to explanation techniques capturing tem-
poral information and (model-agnostic or model-specific)
local explanation techniques.

Within our knowledge, existing techniques that capture
temporal information provide global explanations. These
techniques mainly provide DFAs (Jacobsson 2005; Weiss,
Goldberg, and Yahav 2018; Wang et al. 2023) and their vari-
ants (Ayache, Eyraud, and Goudian 2018; Du et al. 2019;
Dong et al. 2020) as global surrogates. However, as the com-
plexity of practical target models increases, faithful global
explanations are hard for users to understand, which limits
these techniques to explaining relatively simple models.

In contrast, local explanation techniques generate expla-
nations that are easier to understand, as they describe target
models’ behaviors on a subset of inputs. Existing local ex-
planations describe model behaviors by presenting the effect
of each input feature value, e.g., feature attribution (Ribeiro,

Singh, and Guestrin 2016; Lundberg and Lee 2017; Strum-
belj and Kononenko 2014; Tan, Tian, and Li 2023; Arras
et al. 2017; Vinayavekhin et al. 2018; Arras et al. 2019;
Schlegel et al. 2019; Kokalj et al. 2021; Denil, Demiraj,
and de Freitas 2014; Murdoch, Liu, and Yu 2018), deci-
sion rules (Ribeiro, Singh, and Guestrin 2018; Guidotti et al.
2018), counterfactuals, (Wachter, Mittelstadt, and Russell
2017; Dandl et al. 2020; Zhang, Solar-Lezama, and Singh
2018), or visualization (Goldstein et al. 2015; Li et al. 2016;
Ding et al. 2017). For models processing variable-length in-
puts, such explanations cannot faithfully capture models’
behavior. Therefore, a few model-specific techniques con-
sider the effect of multiple features together (Chen, Zheng,
and Ji 2020; Singh, Murdoch, and Yu 2018; Sivill and Flach
2022; Tsang, Rambhatla, and Liu 2020; Nayebi et al. 2023;
Ferrando, Gállego, and Costa-jussà 2022; Mohebbi et al.
2023), but these techniques are designed for specific mod-
els or domains, and still ignore temporal information, thus
limiting their fidelity.

6 Limitations and Future Work
Although we have demonstrated the effectiveness of REX,
there are still some limitations remaining.

Realistic Perturbation Models. The perturbation model
is a key component of model-agnostic explanation tech-
niques. However, in some domains, finding a realistic pertur-
bation model is challenging. REX also faces this challenge.
For example, the perturbation for time series data like stock
prices is not clear.

Efficiency. REX increases the number of predicates. The
benefits of temporal predicates reduce the running time of
rule-based methods, but not for attribution-based methods.
REX still slightly increases the running time of LIME and
KSHAP. If we can eliminate unimportant predicates, we can
further reduce the running time. We plan to address this in
our future work.

7 Conclusion
In conclusion, we have proposed REX, a general frame-
work that adds temporal information to existing local model-
agnostic explanation techniques. REX allows these methods
to generate more useful explanations for models that han-
dle inputs of variable lengths (e.g., RNNs and transformers).
REX achieves this by extending language components of ex-
planations with temporal predicates, and modifying pertur-
bation models so they can generate different-length samples.
We have instantiated REX on Anchors, LIME, and Kernel
SHAP, and demonstrated the effectiveness empirically.
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